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tions we have tried. If the oxidation is carried out using 
sodium metaperiodate buffered with sodium bicarbonate, 
33 and 48%, respectively, of the vinyl selenides analogous 
to 3 are formed. 

The occurrence of a facile Pummerer reaction depends 
on the acidifying effect of the carbonyl group on the a 
proton. Hence it is not surprising that the ketal 6 under- 
goes oxidation** and eliminationsb to enone ketal 7 in 
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Organoselenium Chemistry. Conversion of Cyclic 
Ketones and P-Dicarbonyl Compounds to  Enones 

Summary: The selenoxide syn elimination method for the 
synthesis of enones has been extended to the preparation 
of a-dicarbonyl enones, cyclobutenones, and enone ketals; 
and an important limitation to the method has been 
found. 

Sir: The syn elimination of selenoxides has been shown to 
be a convenient, mild, and high-yield method for the 
preparation of a$-unsaturated carbonyl compounds.lg2 
The precursor a-phenylselenocarbonyl compounds can be 
prepared from ketones, aldehydes, and esters,lJ as well as 
from enol acetateslbX2b and acetylenes.Ib We describe here 
some limitations of the method not heretofore recognized, 
as well as extensions to four-membered rings and P-dicar- 
bony1 compounds. 

The necessity for achieving a cyclic transition state in 
the selenoxide elimination3 may impose conflicting con- 
formational demands on cyclic systems, and in fact only a 
limited range of cyclic enones (five- and six-membered 
rings) have been prepared. Our inability to achieve a high 
yield transformation of 2-methyl-6-phenylselenocylohexa- 
none (1) to the enone (2)la led us to examine this reaction 
in more detail (Scheme I). The formation of by-products 3 
and 4 can be rationalized as resulting from a Pummerer- 
like reaction of the ketoselenoxide. 2-Phenyl-6-phenylsele- 
nocyclohexanone6 also gives only a fair yield of enone, but 
the isomeric 2-phenylseleno compound, in which the phe- 
nyl substituent prevents the Pummerer reaction, gives 
enone in high yield (Table I ) .  Scheme I also presents an 
alternate synthesis of the vinyl selenide 3 by selenenyla- 
tion of the ketoselenoxide. 

Both 2-phenylselenocycloheptanone and -cyclooctanone 
give only small amounts of enone (5-15%) under all condi- 

6, 81% 7. 8@$ 

good yield. 2-Phenylselenocycloheptanone can similarly be 
converted to the ethylene ketal of cycloheptenone in 68% 
yield. 

Table I shows several examples of the preparation of cy- 
clopentenonesga and cyclobutenes. The great facility with 
which cyclobutanones undergo Baeyer-Villiger oxidation 
necessitates the use of ozone as oxidantlo for the prepara- 
tion of 3-phenyl-2-cy~lobutenone.~~ Scheme I1 presents 
two examples which illustrate the ability to trap copper 
enolates with PhSeBr for the synthesis of @-substituted 
enones. 

The extension of the selenoxide elimination to  the syn- 
thesis of enediones from P-dicarbonyl compounds is an 
important one, since such transformations are difficult 
using classical methods.12 The dehydrohalogenation in 
particular often fails because of instability of halodicar- 
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a T o t a l  q u a n t i t y  of PhSeBr  used was 10% excess over RLi used 
in t he  preparat ion o f  t he  cuprate. A sma l l  amoun t  of PhzSez was 
added to  suppress fo rma t ion  of a-ha lo  ketones. B o t h  cis a n d  
t rans isomers (1:4.5) appeared t o  give enone. Reference 8a. 
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Table I 
Preparation of a,p-Unsaturated Carbonyl Compounds 

-----Yield,a %----- 
Compd Olefin Selenide Olefin bPh 6Ohd 

&f Ph 
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a All compounds were fully characterized by spectral methods. * Overall yield. Selenide was prepared by the reaction of 
lithium enolate (LiN-i-Pr2) with PhSeBr or PhSeCl a t  -78". Oxidation of selenide with H202 in CH2C1,; see ref Sa. "elenide 
was prepared by reaction of lithium enolate (from cleavage of enol acetate with MeLi) with PhSeBr a t  -78". One pot 
procedure described in ref la. 0 Selenide prepared by reaction of enol acetate with PhSe02CCF3; see ref lb.  Oxidation by 
ozonolysis in CH2C12 at -78", followed by warming to 25". Selenide prepared by the reaction of sodium enolate (NaH) in 
T H F  with PhSeCl or PhSeBr. j A 95: 5 mixture of geometric isomers is formed. 

bonyl compounds or enones under the reaction conditions. the work-up gives the selenide in quantitative yield. Oxi- 
We have found the method to work superbly for the eight, dation is then carried out either by the H202-CH2C12 me- 
seven and six-membered 2-carboethoxycloalkenones, a re- thodsa or by ozonolysis. 
sult which underscores the conclusions reached above that Acknowledgment. We thank the donors of the Petrole- reactions involving the acidic a hydrogen, were responsible um Research Fund, administered by the American Chem- 

ical Society, for support of this work, and the Du Pont Co. for the failure to achieve high yield syntheses of cylo- 

for a Du Pont Young Faculty Grant (to H. J .  R.). octenone or cycloheptenone itself. Hydrogen peroxide can- 
not to be used as oxidant for the five-I3 and six-membered 
cyclic ketones, since rapid epoxide formation and further 
degradation occurs. Here ozonolysis a t  -78" followed by 
warming is the best procedurelo (elimination occurs at or 
below -10"). 

An important consequence of the mild reaction condi- 
tions is that  in all cases exclusively nonenolized P-dicar- 
bonyl enones are formed, even though a number of these 
systems are known to be significantly or even predomi- 
nantly enolic a t  equilibrium.12 Other synthetic methods 
invariably give a mixture of keto and enol forms. 

The preparation of a-phenylseleno-/3-dicarbonyl com- 
pounds is conveniently carried out a t  room temperature 
by the addition of ketone to a suspension of NaH (excess) 
in THF. When hydrogen evolution is complete (<15 min) 
a solution of 1.05 equiv of PhSeCl (or PhSeBr) in THF is 
added dropwise, and the reaction is immediately poured 
into ether and saturated NaHC03 solution. Completion of 
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A General 1,5-Diene Synthesis. Application to the 
Synthesis of Squalene 

Summary: A new method for the preparation of geometri- 
cally pure 1,5-dienes via coupling of allylic sulfones with 
allylic halides followed by reductive cleavage of the ally- 
lated sulfones is described. 

Sir: The construction of 1,j-dienes of types I and I1 in- 
volving over-all allyl alcohol coupling with geometrical 
and positional control has recently received attention as a 
result of the importance and general utility of such sys- 
tems for the synthesis of juvenile hormones and cyclic ter- 
penoid or steroidal precursors. In conjunction with anoth- 
er project we required a method for carbon-carbon bond 
formation with formation of a 1,j-diene unit.l 

R 

I I1 
We wish to  report a new method for the preparation of 

geometrically pure 1,ij-dienes via coupling of allylic alco- 
hol units which proceeds in good yields with essentially 
complete preservation of the geometry and position of the 
olefinic bonds. 

The over-all synthetic sequence involves (1) conversion 
of the allylic alcohols to allylic bromides. ( 2 )  sulfone for- 
mation with one of the allylic bromides, (3) C-allylation of 
the desired stabilized allyl carbanion with another allylic 
bromide unit, and (4) reductive cleavage of the new sul- 
fone. The complete process can be conveniently carried 
out in 60-70% yield with <1-2% isomerization, either pos- 
itional or cis-trans. 

Treatment of pure trans-geraniol (1) in anhydrous ether 
with PBr3 a t  0" afforded trans-geranyl bromide (2)  in 

near-quantitative yield. Treatment of 2 with sodium p- 
toluenesulfinate in anhydrous DMF a t  ambient tempera- 
ture for 18 hr gave trans-geranyl p-tolyl sulfone 3 in 98% 
yield. Metalation of sulfone 3 at -20" with n-butyllithium 
in tetrahydrofuran-hexamethylphosphoramide (4:l) fol- 
lowed by cooling to -78" and addition of trans-geranyl 
bromide resulted in formation of pure sulfone 4 (89% 

6 , Y = O H  
3 7. Y = c1 

I I 
1, X = O H  
2, X= Br 

Y Y 

8, Y = SO2& 4, x = S0,Ar 
5 .  X - H  9, Y = H  

Ar = e3 
yield). Nmr analysis of the coupled sulfone revealed lack 
of aliphatic methyl resonance, a consequence of coupling 
a t  the y position. In addition the nmr spectrum of 4 re- 
vealed no terminal vinyl resonance. Geometrical isomer- 
ization was rigorously ruled out by coupling of cis- and 
trans-allylic isomers and gIpc comparison of the respective 
products derived from reduction cleavage of the sulfone 
moiety (vide infra). 

The new sulfone 4 was purified and reduced a t  0" with 
lithium in ethylamine under a nitrogen atmosphere. After 
stirring for 30 min the reaction mixture was worked up in 
the standard manner and the product chromatographed 
on silica gel to yield pure all-trans bisgeranyl 52 (77%) 
[the ratio of cis:trans allylic methyl groups a t  6 1.58 and 
1.67 was 2.0:l.O as anticipated for pure trans,trans com- 
pound]. 

Coupling of trans-geranyl sulfone 3 with neryl chlorideld 
7 as described gave sulfone 8 (71%). Reductive cleavage of 
the sulfone provided an 82% yield of cis, trans-nerylgeranyl 
9 [nmr ratio of cis:trans allylic methyl groups was 1.O:l.O 
as expected for pure cis,trans compounds]. Bisgeranyl 5 
and nerylgeranyl 9 are readily separable by glpc and the 
products of the above couplings indicated <1-2% contam- 
ination. 

Although the cleavage of the carbon-sulfur bond with 
lithium in ethylamine proved to be satisfactory, we had 
initially hoped to be able to perform the required cleavage 
reaction under milder reaction conditions. Dabby and co- 
workers3 have reported that the C-S bond of sulfones can 
be cleaved with sodium amalgam. To investigate this car- 
bon-sulfur cleavage reaction sulfone 4 was treated with 
3% sodium amalgam4 in ethanol for 1.5 hr. In addition to  
the expected all-trans tetraene 5 there was obtained the 
rearranged tetraene 10 in a ratio of 9:4 (90%). making this 
procedure unattractive from a synthetic viewpoint. Use of 
hexamethylphosphoramide in ethanol (6:l) resulted in an 
11:6 mixture of 5 and 10, respectively. In the case of 8, use 
of HMPA resulted in a 2: 1 mixture of 9 and 11. 

In a similar fashion employing the procedures developed 
above, we have prepared all-trans-squalene 16 from pure 
trans, trans-farnesol lL5 


